The localization of RNA within a cell or embryo is crucial for proper cellular function or development. There is evidence that the cytoskeleton and RNA may function in the anchoring of localized RNAs at the vegetal cortex of Xenopus laevis oocytes. We found that the organization of the cytokeratin filaments but not the actin cytoskeleton depends on the presence of intact VegT mRNA and a noncoding RNA, Xlsirts. Destruction of either of these transcripts results in disruption of the cytokeratin cytoskeleton in a transcript-specific manner and interferes with proper formation of the germinal granules and subsequent development of the germline. Analysis of the distribution of endogenous VegT and Xlsirts in live oocytes using molecular beacons showed that these RNAs are integrated into the cytokeratin cytoskeleton. These results demonstrate a novel structural role of coding and noncoding RNAs in the organization of the vegetal cortex of Xenopusoocytes.
Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopusoocytes Available to Purchase
Malgorzata Kloc, Katarzyna Wilk, Diana Vargas, Yuri Shirato, Szczepan Bilinski, Laurence D. Etkin; Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopusoocytes. Development 1 August 2005; 132 (15): 3445–3457. doi: https://doi.org/10.1242/dev.01919
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.