The intervening zone (IZ) is a pool of progenitor cells located at the midbrain-hindbrain boundary (MHB) and important for MHB maintenance,midbrain-hindbrain growth and the generation of midbrain-hindbrain neurons. Recently, we implicated the Hairy/E(spl) transcription factor Her5 in the formation of the medial (most basal) part of the IZ (MIZ) in zebrafish; the molecular bases for lateral IZ (LIZ) formation, however, remain unknown. We now demonstrate that her5 is physically linked to a new family member, him, displaying an identical MHB expression pattern. Using single and double knockdowns of him and her5, as well as a him+her5 deletion mutant background (b404), we demonstrate that Him and Her5 are equally necessary for MIZ formation, and that they act redundantly in LIZ formation in vivo. We show that these processes do not involve cross-regulation between Him and Her5 expression or activities,although Him and Her5 can heterodimerize with high affinity. Increasing the function of one factor when the other is depleted further shows that Him and Her5 are functionally interchangeable. Together, our results demonstrate that patterning and neurogenesis are integrated by the her5-himgene pair to maintain a progenitor pool at the embryonic MHB. We propose a molecular mechanism for this process where the global `Him+Her5' activity inhibits ngn1 expression in a dose-dependent manner and through different sensitivity thresholds along the medio-lateral axis of the neural plate.
Inhibition of neurogenesis at the zebrafish midbrain-hindbrain boundary by the combined and dose-dependent activity of a new hairy/E(spl)gene pair Available to Purchase
These two authors contributed equally to this work
Present address: Institute of Neuroscience, University of Oregon, Eugene,OR 97403, USA
Present address: Children's Memorial Institute for Education and Research,Northwestern University Feinberg School of Medicine, Chicago, IL 60614,USA
Jovica Ninkovic, Alexandra Tallafuss, Christoph Leucht, Jacek Topczewski, Birgit Tannhäuser, Lilianna Solnica-Krezel, Laure Bally-Cuif; Inhibition of neurogenesis at the zebrafish midbrain-hindbrain boundary by the combined and dose-dependent activity of a new hairy/E(spl)gene pair. Development 1 January 2005; 132 (1): 75–88. doi: https://doi.org/10.1242/dev.01525
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8863)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.