The mammalian retina contains numerous morphological and physiological subtypes of amacrine cells necessary for integrating and modulating visual signals presented to the output neurons. Among subtypes of amacrine cells grouped by neurotransmitter phenotypes, the glycinergic andγ-aminobutyric acid (GABA)ergic amacrine cells constitute two major subpopulations. To date, the molecular mechanisms governing the specification of subtype identity of amacrine cells remain elusive. We report here that during mouse development, the Barhl2 homeobox gene displays an expression pattern in the nervous system that is distinct from that of its homologue Barhl1. In the developing retina, Barhl2expression is found in postmitotic amacrine, horizontal and ganglion cells,while Barhl1 expression is absent. Forced expression of Barhl2 in retinal progenitors promotes the differentiation of glycinergic amacrine cells, whereas a dominant-negative form of Barhl2 has the opposite effect. By contrast, they exert no effect on the formation of GABAergic neurons. Moreover, misexpressed Barhl2 inhibits the formation of bipolar and Müller glial cells, indicating that Barhl2 is able to function both as a positive and negative regulator, depending on different types of cells. Taken together, our data suggest that Barhl2 may function to specify the identity of glycinergic amacrine cells from competent progenitors during retinogenesis.
Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells Available to Purchase
Zeqian Mo, Shengguo Li, Xuejie Yang, Mengqing Xiang; Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development 1 April 2004; 131 (7): 1607–1618. doi: https://doi.org/10.1242/dev.01071
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. Together with our preprint highlights service, preLights, these perspectives help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.