Cerebellar granule cells (CGC) are the most abundant neurons in the mammalian brain, and an important tool for unraveling molecular mechanisms underlying neurogenesis. Math1 is a bHLH transcription activator that is essential for the genesis of CGC. To delineate the effects of Math1 on CGC differentiation, we generated and studied primary cultures of CGC progenitors from Math1/lacZ knockout mice. Rhombic lip precursors appeared properly positioned, expressed CGC-specific markers, and maintained Math1 promoter activity in vivo and in vitro,suggesting that Math1 is not essential for the initial stages of specification or survival of CGC. Moreover, the continuous activity of Math1 promoter in the absence of MATH1, indicated that MATH1 was not necessary for the activation of its own expression. After 6, but not 3, days in culture, Math1 promoter activity was downregulated in control cultures, but not in cells from Math1 null mice, thus implying that Math1 participates in a negative regulatory feedback loop that is dependent on increased levels of MATH1 generated through the positive autoregulatory feedback loop. In addition, Math1 null CGC did not differentiate properly in culture, and were unable to extend processes. All Notch signaling pathway receptors and ligands tested were expressed in the rhombic lip at embryonic date 14, with highest levels of Notch2 and Jag1. However, Math1-null rhombic lip cells presented conspicuous downregulation of Notch4 and Dll1. Moreover, of the two transcriptional repressors known to antagonize Math1, Hes5(but not Hes1) was downregulated in Math1-null rhombic lip tissue and primary cultures, and was shown to bind MATH1, thus revealing a negative regulatory feedback loop. Taken together, our data demonstrate that CGC differentiation, but not specification, depends on Math1, which acts by regulating the level of multiple components of the Notch signaling pathway.
Math1 controls cerebellar granule cell differentiation by regulating multiple components of the Notch signaling pathway
These authors contributed equally to the work
Present address: The Lautenberg Center for General and Tumor Immunology,Hadassah Medical School, Jerusalem, Israel
Roi Gazit, Valery Krizhanovsky, Nissim Ben-Arie; Math1 controls cerebellar granule cell differentiation by regulating multiple components of the Notch signaling pathway. Development 15 February 2004; 131 (4): 903–913. doi: https://doi.org/10.1242/dev.00982
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.