Pax3 is a transcription factor that is required by Pre-migratory neural crest cells give rise to the peripheral nervous system, melanocytes, some vascular smooth muscle, and numerous other derivatives. These cells require the transcription factor Pax3, and both mice and humans with Pax3 deficiency exhibit neural crest-related developmental defects. Pax3 is also expressed in the dorsal neural tube, and by myogenic progenitors in the presomitic mesoderm and the hypaxial somites. Molecular pathways that regulate Pax3expression in the roof plate probably represent early upstream signals in neural crest induction. We have identified an enhancer region in the Pax3 genomic locus that is sufficient to recapitulate expression in neural crest precursors in transgenic mice. We show that Tead2, a member of the Tead box family of transcription factors, binds to a neural crest enhancer and activates Pax3 expression. Tead2, and its co-activator YAP65, are co-expressed with Pax3 in the dorsal neural tube, and mutation of the Tead2 binding site in the context of Pax3 transgenic constructs abolishes neural expression. In addition, a Tead2-Engrailed fusion protein is able to repress retinoic acid-induced Pax3 expression in P19 cells and in vivo. These results suggest that Tead2 is an endogenous activator of Pax3 in neural crest.
Identification of minimal enhancer elements sufficient for Pax3 expression in neural crest and implication of Tead2 as a regulator of Pax3 Available to Purchase
Rita C. Milewski, Neil C. Chi, Jun Li, Christopher Brown, Min Min Lu, Jonathan A. Epstein; Identification of minimal enhancer elements sufficient for Pax3 expression in neural crest and implication of Tead2 as a regulator of Pax3. Development 15 February 2004; 131 (4): 829–837. doi: https://doi.org/10.1242/dev.00975
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.