The Epidermal growth factor receptor (Egfr) pathway controls cell fate decisions throughout phylogeny. Typically, binding of secreted ligands to Egfr on the cell surface initiates a well-described cascade of events that ultimately invokes transcriptional changes in the nucleus. In contrast, the mechanisms by which autocrine effects are regulated in the ligand-producing cell are unclear. In the Drosophila eye, Egfr signaling, induced by the Spitz ligand, is required for differentiation of all photoreceptors except for R8, the primary source of Spitz. R8 differentiation is instead under the control of the transcription factor Senseless. We show that high levels of Egfr activation are incompatible with R8 differentiation and describe the mechanism by which Egfr signaling is actively prevented in R8. Specifically,Senseless does not affect cytoplasmic transduction of Egfr activation, but does block nuclear transduction of Egfr activation through transcriptional repression of pointed, which encodes the nuclear effector of the pathway. Thus, Senseless promotes normal R8 differentiation by preventing the effects of autocrine stimulation by Spitz. An analogous relationship exists between Senseless and Egfr pathway orthologs in T-lymphocytes, suggesting that this mode of repression of Egfr signaling is conserved.
Senseless represses nuclear transduction of Egfr pathway activation
Benjamin J. Frankfort, Graeme Mardon; Senseless represses nuclear transduction of Egfr pathway activation. Development 1 February 2004; 131 (3): 563–570. doi: https://doi.org/10.1242/dev.00941
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.