Six1 is a member of the Six family homeobox genes, which function as components of the Pax-Six-Eya-Dach gene network to control organ development. Six1 is expressed in otic vesicles, nasal epithelia,branchial arches/pouches, nephrogenic cords, somites and a limited set of ganglia. In this study, we established Six1-deficient mice and found that development of the inner ear, nose, thymus, kidney and skeletal muscle was severely affected. Six1-deficient embryos were devoid of inner ear structures, including cochlea and vestibule, while their endolymphatic sac was enlarged. The inner ear anomaly began at around E10.5 and Six1was expressed in the ventral region of the otic vesicle in the wild-type embryos at this stage. In the otic vesicle of Six1-deficient embryos,expressions of Otx1, Otx2, Lfng and Fgf3,which were expressed ventrally in the wild-type otic vesicles, were abolished,while the expression domains of Dlx5, Hmx3, Dach1and Dach2, which were expressed dorsally in the wild-type otic vesicles, expanded ventrally. Our results indicate that Six1functions as a key regulator of otic vesicle patterning at early embryogenesis and controls the expression domains of downstream otic genes responsible for respective inner ear structures. In addition, cell proliferation was reduced and apoptotic cell death was enhanced in the ventral region of the otic vesicle, suggesting the involvement of Six1 in cell proliferation and survival. In spite of the similarity of otic phenotypes of Six1- and Shh-deficient mice, expressions of Six1 and Shhwere mutually independent.
Six1 controls patterning of the mouse otic vesicle
Hidenori Ozaki, Kazuaki Nakamura, Jun-ichi Funahashi, Keiko Ikeda, Gen Yamada, Hisashi Tokano, Hiro-oki Okamura, Ken Kitamura, Shigeaki Muto, Hayato Kotaki, Katsuko Sudo, Reiko Horai, Yoichiro Iwakura, Kiyoshi Kawakami; Six1 controls patterning of the mouse otic vesicle. Development 1 February 2004; 131 (3): 551–562. doi: https://doi.org/10.1242/dev.00943
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.