Identification of endogenous signals that regulate expansion and maturation of organ-specific progenitor cells is a major goal in studies of organ development. Here we provide evidence that growth differentiation factor 11(GDF11), a member of the TGF-β ligand family, governs the number and maturation of islet progenitor cells in mouse pancreas development. Gdf11 is expressed in embryonic pancreatic epithelium during formation of islet progenitor cells that express neurogenin 3. Mice deficient for Gdf11 harbor increased numbers of NGN3+ cells,revealing that GDF11 negatively regulates production of islet progenitor cells. Despite a marked expansion of these NGN3+ islet progenitors, mice lacking Gdf11 have reduced β-cell numbers and evidence of arrested β-cell development, indicating that GDF11 is also required for β-cell maturation. Similar precursor and islet cell phenotypes are observed in mice deficient for SMAD2, an intracellular signaling factor activated by TGF-β signals. Our data suggest that Gdf11 and Smad2 regulate islet cell differentiation in parallel to the Notch pathway, which previously has been shown to control development of NGN3+ cells. Thus, our studies reveal mechanisms by which GDF11 regulates the production and maturation of islet progenitor cells in pancreas development.
GDF11 modulates NGN3+ islet progenitor cell number and promotes β-cell differentiation in pancreas development Available to Purchase
These authors contributed equally to this study
Present address: MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
Erin B. Harmon, Åsa A. Apelqvist, Nora G. Smart, Xueying Gu, Douglas H. Osborne, Seung K. Kim; GDF11 modulates NGN3+ islet progenitor cell number and promotes β-cell differentiation in pancreas development. Development 15 December 2004; 131 (24): 6163–6174. doi: https://doi.org/10.1242/dev.01535
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.