The ABC model of flower development, established through studies in eudicot model species, proposes that petal and stamen identity are under the control of B-class genes. Analysis of B- and C-class genes in the grass species rice and maize suggests that the C- and B-class functions are conserved between monocots and eudicots, with B-class genes controlling stamen and lodicule development. We have undertaken a further analysis of the maize B-class genes Silky1, the putative AP3 ortholog, and Zmm16, a putative PI ortholog, in order to compare their function with the Arabidopsis B-class genes. Our results show that maize B-class proteins interact in vitro to bind DNA as an obligate heterodimer, as do Arabidopsis B-class proteins. The maize proteins also interact with the appropriate Arabidopsis B-class partner proteins to bind DNA. Furthermore, we show that maize B-class genes are capable of rescuing the corresponding Arabidopsis B-class mutant phenotypes. This demonstrates B-class activity of the maize gene Zmm16, and provides compelling evidence that B-class gene function is conserved between monocots and eudicots.

You do not currently have access to this content.