Birth defects, which occur in one out of 20 live births, often affect multiple organs that have common developmental origins. Human and mouse studies indicate that haploinsufficiency of the transcription factor TBX1 disrupts pharyngeal arch development, resulting in the cardiac and craniofacial features associated with microdeletion of 22q11 (del22q11), the most frequent human deletion syndrome. Here, we have generated an allelic series of Tbx1 deficiency that reveals a lower critical threshold for Tbx1 activity in the cardiac outflow tract compared with other pharyngeal arch derivatives, including the palatal bones. Mice hypomorphic for Tbx1 failed to activate expression of the forkhead transcription factor Foxa2 in the pharyngeal mesoderm, which contains cardiac outflow precursors derived from the anterior heart field. We identified a Fox-binding site upstream of Tbx1 that interacted with Foxa2 and was necessary for pharyngeal mesoderm expression of Tbx1, revealing an autoregulatory loop that may explain the increased cardiac sensitivity to Tbx1 dose. Downstream of Tbx1, we found a fibroblast growth factor 8 (Fgf8) enhancer that was dependent on Tbx1 in vivo for regulating expression in the cardiac outflow tract, but not in pharyngeal arches. Consistent with its role in regulating cardiac outflow tract cells Tbx1 gain of function resulted in expansion of the cardiac outflow tract segment derived from the anterior heart field as marked by Fgf10. These findings reveal a Tbx1-dependent transcriptional and signaling network in the cardiac outflow tract that renders mouse cardiovascular development more susceptible than craniofacial development to a reduction in Tbx1 dose, similar to humans with del22q11.
Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors Available to Purchase
These authors contributed equally to this work
Tonghuan Hu, Hiroyuki Yamagishi, Jun Maeda, John McAnally, Chihiro Yamagishi, Deepak Srivastava; Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 1 November 2004; 131 (21): 5491–5502. doi: https://doi.org/10.1242/dev.01399
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8863)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.