Birth defects, which occur in one out of 20 live births, often affect multiple organs that have common developmental origins. Human and mouse studies indicate that haploinsufficiency of the transcription factor TBX1 disrupts pharyngeal arch development, resulting in the cardiac and craniofacial features associated with microdeletion of 22q11 (del22q11), the most frequent human deletion syndrome. Here, we have generated an allelic series of Tbx1 deficiency that reveals a lower critical threshold for Tbx1 activity in the cardiac outflow tract compared with other pharyngeal arch derivatives, including the palatal bones. Mice hypomorphic for Tbx1 failed to activate expression of the forkhead transcription factor Foxa2 in the pharyngeal mesoderm, which contains cardiac outflow precursors derived from the anterior heart field. We identified a Fox-binding site upstream of Tbx1 that interacted with Foxa2 and was necessary for pharyngeal mesoderm expression of Tbx1, revealing an autoregulatory loop that may explain the increased cardiac sensitivity to Tbx1 dose. Downstream of Tbx1, we found a fibroblast growth factor 8 (Fgf8) enhancer that was dependent on Tbx1 in vivo for regulating expression in the cardiac outflow tract, but not in pharyngeal arches. Consistent with its role in regulating cardiac outflow tract cells Tbx1 gain of function resulted in expansion of the cardiac outflow tract segment derived from the anterior heart field as marked by Fgf10. These findings reveal a Tbx1-dependent transcriptional and signaling network in the cardiac outflow tract that renders mouse cardiovascular development more susceptible than craniofacial development to a reduction in Tbx1 dose, similar to humans with del22q11.
Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors Available to Purchase
These authors contributed equally to this work
Tonghuan Hu, Hiroyuki Yamagishi, Jun Maeda, John McAnally, Chihiro Yamagishi, Deepak Srivastava; Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 1 November 2004; 131 (21): 5491–5502. doi: https://doi.org/10.1242/dev.01399
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. Together with our preprint highlights service, preLights, these perspectives help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.