The CCCH tandem zinc finger protein, Zfp36l2, like its better-known relative tristetraprolin (TTP), can decrease the stability of AU-rich element-containing transcripts in cell transfection studies; however, its physiological importance is unknown. We disrupted Zfp36l2 in mice,resulting in decreased expression of a truncated protein in which the N-terminal 29 amino acids had been deleted (ΔN-Zfp36l2). Mice derived from different clones of ES cells exhibited complete female infertility,despite evidence from embryo and ovary transplantation experiments that they could gestate and rear wild-type young. ΔN-Zfp36l2 females apparently cycled and ovulated normally, and their ova could be fertilized; however, the embryos did not progress beyond the two-cell stage of development. These mice represent a specific model of disruption of the earliest stages of embryogenesis, implicating Zfp36l2, a probable mRNA-binding and destabilizing protein, in the physiological control of female fertility at the level of early embryonic development. This newly identified biological role for Zfp36l2 may have implications for maternal mRNA turnover in normal embryogenesis, and conceivably could be involved in some cases of unexplained human female infertility.
The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development
Silvia B. V. Ramos, Deborah J. Stumpo, Elizabeth A. Kennington, Ruth S. Phillips, Cheryl B. Bock, Fernando Ribeiro-Neto, Perry J. Blackshear; The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 1 October 2004; 131 (19): 4883–4893. doi: https://doi.org/10.1242/dev.01336
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.