Genetic and physiological analyses implicate auxin flux in patterning,initiation and growth of floral organs. Within the Arabidopsisflower, the ETTIN/ARF3 transcription factor responds to auxin to effect perianth organ number and reproductive organ differentiation. This work describes a modifier of ettin that causes filamentous, mispositioned outer whorl organs and reduced numbers of malformed stamens in the double mutant. The modifier was discovered to be a new allele of the seuss(seu) mutant. SEU encodes a novel protein that is predicted to transcriptionally co-repress the AGAMOUS floral organ identity gene. The effects of seu on ett are shown to be independent of the SEU-AG pathway. Furthermore, morphological, physiological and genetic evidence implicate SEU in auxin-regulated growth and development. seu has a pleiotropic phenotype that includes reductions in several classic auxin responses such as apical dominance, lateral root initiation, sensitivity to exogenous auxin and activation of the DR5 auxin response reporter. seu displays a synergistic interaction with the auxin response mutant pinoid, producing flowers with few outer whorl organs. Collectively, these data suggest that SEU is a novel factor affecting auxin response. A model is proposed in which SEU functions jointly with ETT in auxin response to promote floral organ patterning and growth.
The role of SEUSS in auxin response and floral organ patterning Available to Purchase
Jennifer Pfluger, Patricia Zambryski; The role of SEUSS in auxin response and floral organ patterning. Development 1 October 2004; 131 (19): 4697–4707. doi: https://doi.org/10.1242/dev.01306
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. Together with our preprint highlights service, preLights, these perspectives help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.