The Shh protein contains both N-terminal and C-terminal lipids. The functional redundancy of these lipid moieties is presently unclear. Here, we compare the relative roles of the N- and C-terminal lipids in early rat striatal neuronal differentiation, membrane association and multimerization,and ventralizing activity in the zebrafish forebrain. We show that these lipid act synergistically in cell tethering and the formation of a large (L)multimer (669 kDa). However, the C-terminal lipid antagonizes the rat striatal neuronal differentiation-inducing activity of the N-terminal lipid. In addition, multimerization is required but not sufficient for the differentiation-inducing activity. Based on the presence of different N- and C-lipid-containing Shh proteins in the rat embryo, and on their different activities, we propose that both N- and C-terminal lipids are required for the formation of multimers involved in long-range signaling, and that the C-terminal lipid may function in long-range signaling by reducing Shh activity until it reaches its long-range target. Comparative analysis of the ventralizing activities of different N- and C-terminal lipid-containing Shh proteins in the zebrafish forebrain shows that the presence of at least one lipid is required for signaling activity, suggesting that lipid modification of Shh is a conserved requirement for signaling in the forebrain of rodents and zebrafish.
Synergistic and antagonistic roles of the Sonic hedgehog N- and C-terminal lipids
These authors contributed equally to this work
Present address: Program in Neurobiology and Behaviour, University of Washington, Seattle, WA 98195, USA
Present address: Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
Present address: Vanderbilt School of Medicine, Nashville, TN 37232,USA
Present address: Genetics and Development, Columbia University, New York,NY 10032, USA
Jianchi Feng, Bryan White, Oksana V. Tyurina, Burcu Guner, Theresa Larson, Hae Young Lee, Rolf O. Karlstrom, Jhumku D. Kohtz; Synergistic and antagonistic roles of the Sonic hedgehog N- and C-terminal lipids. Development 1 September 2004; 131 (17): 4357–4370. doi: https://doi.org/10.1242/dev.01301
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.