The dachsous (ds) gene encodes a member of the cadherin family involved in the non-canonical Wnt signaling pathway that controls the establishment of planar cell polarity (PCP) in Drosophila. ds is the only known cadherin gene in Drosophila with a restricted spatial pattern of expression in imaginal discs from early stages of larval development. In the wing disc, ds is first expressed distally, and later is restricted to the hinge and lateral regions of the notum. Flies homozygous for strong ds hypomorphic alleles display previously uncharacterized phenotypes consisting of a reduction of the hinge territory and an ectopic notum. These phenotypes resemble those caused by reduction of the canonical Wnt signal Wingless (Wg) during early wing disc development. An increase in Wg activity can rescue these phenotypes,indicating that Ds is required for efficient Wg signaling. This is further supported by genetic interactions between ds and several components of the Wg pathway in another developmental context. Ds and Wg show a complementary pattern of expression in early wing discs, suggesting that Ds acts in Wg-receiving cells. These results thus provide the first evidence for a more general role of Ds in Wnt signaling during imaginal development, not only affecting cell polarization but also modulating the response to Wg during the subdivision of the wing disc along its proximodistal (PD) axis.
The dachsous gene, a member of the cadherin family, is required for Wg-dependent pattern formation in the Drosophila wing disc
Isabel Rodríguez; The dachsous gene, a member of the cadherin family, is required for Wg-dependent pattern formation in the Drosophila wing disc. Development 1 July 2004; 131 (13): 3195–3206. doi: https://doi.org/10.1242/dev.01195
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.