RNA localization is a key mechanism for generating cell and developmental polarity in a wide variety of organisms. We have performed studies to investigate a role for the Xenopus homolog of the double-stranded RNA-binding protein, Staufen, in RNA localization during oogenesis. We have found that Xenopus Staufen (XStau) is present in a ribonucleoprotein complex, and associates with both a kinesin motor protein and vegetally localized RNAs Vg1 and VegT. A functional role for XStau was revealed through expression of a dominant-negative version that blocks localization of Vg1 RNA in vivo. Our results suggest a central role for XStau in RNA localization in Xenopus oocytes, and provide evidence that Staufen is a conserved link between specific mRNAs and the RNA localization machinery.
Xenopus Staufen is a component of a ribonucleoprotein complex containing Vg1 RNA and kinesin Available to Purchase
Young J. Yoon, Kimberly L. Mowry; Xenopus Staufen is a component of a ribonucleoprotein complex containing Vg1 RNA and kinesin. Development 1 July 2004; 131 (13): 3035–3045. doi: https://doi.org/10.1242/dev.01170
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.