The receptor tyrosine kinase FLK1 and the transcription factor SCL play crucial roles in the establishment of hematopoietic and endothelial cell lineages in mice. We have previously used an in vitro differentiation model of embryonic stem (ES) cells and demonstrated that hematopoietic and endothelial cells develop via sequentially generated FLK1+ and SCL+cells. To gain a better understanding of cellular and molecular events leading to hematopoietic specification, we examined factors necessary for FLK1+ and SCL+ cell induction in serum-free conditions. We demonstrate that bone morphogenetic protein (BMP) 4 was required for the generation of FLK1+ and SCL+ cells, and that vascular endothelial growth factor (VEGF) was necessary for the expansion and differentiation of SCL-expressing hematopoietic progenitors. Consistently, Flk1-deficient ES cells responded to BMP4 and generated TER119+ and CD31+ cells, but they failed to expand in response to VEGF. The Smad1/5 and map kinase pathways were activated by BMP4 and VEGF, respectively. The overexpression of SMAD6 in ES cells resulted in a reduction of FLK1+ cells. In addition, a MAP kinase kinase 1 specific inhibitor blocked the expansion of SCL+ cells in response to VEGF. Finally, VEGF mediated expansion of hematopoietic and endothelial cell progenitors was inhibited by TGFβ1, but was augmented by activin A. Our studies suggest that hematopoietic and endothelial commitment from the mesoderm occurs via BMP4-mediated signals and that expansion and/or differentiation of such progenitors is achieved by an interplay of VEGF,TGFβ1 and activin A signaling.
A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells
These authors contributed equally to this work
Changwon Park, Iva Afrikanova, Yun Shin Chung, Wen Jie Zhang, Elizabeth Arentson, Guo hua Fong, Alexander Rosendahl, Kyunghee Choi; A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development 1 June 2004; 131 (11): 2749–2762. doi: https://doi.org/10.1242/dev.01130
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.