Members of the Hedgehog (Hh) family of intercellular signaling molecules play crucial roles in animal development. Aberrant regulation of Hh signaling in humans causes developmental defects, and leads to various genetic disorders and cancers. We have characterized a novel regulator of Hh signaling through the analysis of the zebrafish midline mutant iguana (igu). Mutations in igu lead to reduced expression of Hh target genes in the ventral neural tube, similar to the phenotype seen in zebrafish mutants known to affect Hh signaling. Contradictory at first sight, igu mutations lead to expanded Hh target gene expression in somites. Genetic and pharmacological analyses revealed that the expression of Hh target genes in igu mutants requires Gli activator function but does not depend on Smoothened function. Our results show that the ability of Gli proteins to activate Hh target gene expression in response to Hh signals is generally reduced in igu mutants both in the neural tube and in somites. Although this reduced Hh signaling activity leads to a loss of Hh target gene expression in the neural tube, the same low levels of Hh signaling appear to be sufficient to activate Hh target genes throughout somites because of different threshold responses to Hh signals. We also show that Hh target gene expression in igu mutants is resistant to increased protein kinase A activity that normally represses Hh signaling. Together, our data indicate that igu mutations impair both the full activation of Gli proteins in response to Hh signals, and the negative regulation of Hh signaling in tissues more distant from the source of Hh. Positional cloning revealed that the igu locus encodes Dzip1, a novel intracellular protein that contains a single zinc-finger protein-protein interaction domain. Overexpression of Igu/Dzip1 proteins suggested that Igu/Dzip1 functions in a permissive way in the Hh signaling pathway. Taken together, our studies show that Igu/Dzip1 functions as a permissive factor that is required for the proper regulation of Hh target genes in response to Hh signals.
The zebrafish iguana locus encodes Dzip1, a novel zinc-finger protein required for proper regulation of Hedgehog signaling
Kohshin Sekimizu, Noriyuki Nishioka, Hiroshi Sasaki, Hiroyuki Takeda, Rolf O. Karlstrom, Atsushi Kawakami; The zebrafish iguana locus encodes Dzip1, a novel zinc-finger protein required for proper regulation of Hedgehog signaling. Development 1 June 2004; 131 (11): 2521–2532. doi: https://doi.org/10.1242/dev.01059
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.