The Hedgehog (Hh) morphogenetic gradient controls multiple developmental patterning events in Drosophila and vertebrates. Patched (Ptc), the Hh receptor, restrains both Hh spreading and Hh signaling. We report how endocytosis regulates the concentration and activity of Hh in the wing imaginal disc. Our studies show that Ptc limits the Hh gradient by internalizing Hh through endosomes in a dynamin-dependent manner, and that both Hh and Ptc are targeted to lysosomal degradation. We also found that the ptc14 mutant does not block Hh spreading, as it has a failure in endocytosis. However, this mutant protein is able to control the expression of Hh target genes as the wild-type protein, indicating that the internalization mediated by Ptc is not required for signal transduction. In addition, we noted that both in this mutant and in those not producing Ptc protein, Hh still occurred in the endocytic vesicles of Hh-receiving cells,suggesting the existence of a second, Ptc-independent, mechanism of Hh internalization.
Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction Available to Purchase
Carlos Torroja, Nicole Gorfinkiel, Isabel Guerrero; Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction. Development 15 May 2004; 131 (10): 2395–2408. doi: https://doi.org/10.1242/dev.01102
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.