During vertebrate embryogenesis, paraxial mesoderm gives rise to somites,which subsequently develop into the dermis, skeletal muscle, ribs and vertebrae of the adult. Mutations that disrupt the patterning of individual somites have dramatic effects on these tissues, including fusions of the ribs and vertebrae. The T-box transcription factor, Tbx6, is expressed in the paraxial mesoderm but is downregulated as somites develop. It is essential for the formation of posterior somites, which are replaced with ectopic neural tubes in Tbx6-null mutant embryos. We show that partial restoration of Tbx6 expression in null mutants rescues somite development, but that rostrocaudal patterning within them is defective, ultimately resulting in rib and vertebral fusions, demonstrating that Tbx6 activity in the paraxial mesoderm is required not simply for somite specification but also for their normal patterning. Somite patterning is dependent upon Notch signaling and we show that Tbx6 genetically interacts with the Notch ligand,delta-like 1 (Dll1). Dll1 expression, which is absent in theTbx6-null mutant, is restored at reduced levels in the partially rescued mutants, suggesting that Dll1 is a target of Tbx6. We also identify the spontaneous mutation rib-vertebrae as a hypomorphic mutation in Tbx6. The similarity in the phenotypes we describe here and that of some human birth defects, such as spondylocostal dysostosis,raises the possibility that mutations in Tbx6 or components of this pathway may be responsible for these defects.
Defective somite patterning in mouse embryos with reduced levels ofTbx6
Phillip H. White, Deborah R. Farkas, Erin E. McFadden, Deborah L. Chapman; Defective somite patterning in mouse embryos with reduced levels ofTbx6. Development 15 April 2003; 130 (8): 1681–1690. doi: https://doi.org/10.1242/dev.00367
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.