Loss-of-function mutations of HASTY (HST) affect many different processes in Arabidopsis development. In addition to reducing the size of both roots and lateral organs of the shoot, hstmutations affect the size of the shoot apical meristem, accelerate vegetative phase change, delay floral induction under short days, adaxialize leaves and carpels, disrupt the phyllotaxis of the inflorescence, and reduce fertility. Double mutant analysis suggests that HST acts in parallel toSQUINT in the regulation of phase change and in parallel toKANADI in the regulation of leaf polarity. Positional cloning demonstrated that HST is the Arabidopsis ortholog of the importin β-like nucleocytoplasmic transport receptors exportin 5in mammals and MSN5 in yeast. Consistent with a potential role in nucleocytoplasmic transport, we found that HST interacts with RAN1 in a yeast two-hybrid assay and that a HST-GUS fusion protein is located at the periphery of the nucleus. HST is one of at least 17 members of the importin-βfamily in Arabidopsis and is the first member of this family shown to have an essential function in plants. The hst loss-of-function phenotype suggests that this protein regulates the nucleocytoplasmic transport of molecules involved in several different morphogenetic pathways, as well as molecules generally required for root and shoot growth.
HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis
Krista M. Bollman, Milo J. Aukerman, Mee-Yeon Park, Christine Hunter, Tanya Z. Berardini, R. Scott Poethig; HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 15 April 2003; 130 (8): 1493–1504. doi: https://doi.org/10.1242/dev.00362
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.