The transmembrane protein Kekkon 1 (Kek1) has previously been shown to act in a negative feedback loop to downregulate the Drosophila Epidermal Growth Factor Receptor (DER) during oogenesis. We show that this protein plays a similar role in other DER-mediated developmental processes. Structure-function analysis reveals that the extracellular Leucine-Rich Repeat(LRR) domains of Kek1 are critical for its function through direct association with DER, whereas its cytoplasmic domain is required for apical subcellular localization. In addition, the use of chimeric proteins between Kek1 extracellular and transmembrane domains fused to DER intracellular domain indicates that Kek1 forms an heterodimer with DER in vivo. To characterize more precisely the mechanism underlying the Kek1/DER interaction, we used mammalian ErbB/EGFR cell-based assays. We show that Kek1 is capable of physically interacting with each of the known members of the mammalian ErbB receptor family and that the Kek1/EGFR interaction inhibits growth factor binding, receptor autophosphorylation and Erk1/2 activation in response to EGF. Finally, in vivo experiments show that Kek1 expression potently suppresses the growth of mouse mammary tumor cells derived from aberrant ErbB receptors activation, but does not interfere with the growth of tumor cells derived from activated Ras. Our results underscore the possibility that Kek1 may be used experimentally to inhibit ErbB receptors and point to the possibility that, as yet uncharacterized, mammalian transmembrane LRR proteins might act as modulators of growth factor signalling.
Mechanism of inhibition of the Drosophila and mammalian EGF receptors by the transmembrane protein Kekkon 1
These authors contributed equally to this work
Christian Ghiglione, Laufey Amundadottir, Margret Andresdottir, David Bilder, John A. Diamonti, Stéphane Noselli, Norbert Perrimon, Kermit L. Carraway III; Mechanism of inhibition of the Drosophila and mammalian EGF receptors by the transmembrane protein Kekkon 1. Development 15 September 2003; 130 (18): 4483–4493. doi: https://doi.org/10.1242/dev.00617
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.