The PAR-1 kinase plays a conserved role in cell polarity in C. elegans,Drosophila and mammals. We have investigated the role of PAR-1 in epithelial polarity by generating null mutant clones in the Drosophila follicular epithelium. Large clones show defects in apicobasal membrane polarity, but small clones induced later in development usually have a normal membrane polarity. However, all cells that lack PAR-1 accumulate spectrin and F-actin laterally, and show a strong increase in the density of microtubules. This is consistent with the observation that the mammalian PAR-1 homologues, the MARKs, dramatically reduce the number of microtubules, when overexpressed in tissue culture cells. The MARKs have been proposed to destabilize microtubules by inhibiting the stabilizing activity of the Tau family of microtubule-associated proteins. This is not the case in Drosophila, however, as null mutations in the single taufamily member in the genome have no effect on the microtubule organisation in the follicle cells. Furthermore, PAR-1 activity stabilises microtubules, as microtubules in mutant cells depolymerise much more rapidly after cold or colcemid treatments. Loss of PAR-1 also disrupts the basal localisation of the microtubule plus ends, which are mislocalised to the centre of mutant cells. Thus, Drosophila PAR-1 regulates the density, stability and apicobasal organisation of microtubules. Although the direct targets of PAR-1 are unknown, we suggest that it functions by regulating the plus ends,possibly by capping them at the basal cortex.
The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium
Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
Present address: Harvard Medical School and Brigham and Women's Hospital,Department of Pathology, 221 Longwood Ave, LMRC 514, Boston, MA 02115, USA
Hélène Doerflinger, Richard Benton, Joshua M. Shulman, Daniel St Johnston; The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium. Development 1 September 2003; 130 (17): 3965–3975. doi: https://doi.org/10.1242/dev.00616
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.