Digestive organ development occurs through a sequence of morphologically distinct stages, from overtly featureless endoderm, through organ primordia to, ultimately, adult form. The developmental controls that govern progression from one stage to the next are not well understood. To identify genes required for the formation of vertebrate digestive organs we performed a genetic screen in zebrafish. We isolated the nil per os (npo) mutation,which arrests morphogenesis and cytodifferentiation of the gut and exocrine pancreas in a primodial state. We identified the npo gene by positional cloning. It encodes a conserved protein, with multiple RNA recognition motifs, that is related to the yeast protein Mrd1p. During development npo is expressed in a dynamic fashion, functioning cell autonomously to promote organ cytodifferentiation. Antisense-mediated knockdown of npo results in organ hypoplasia, and overexpression of npo causes an overgrowth of gastrointestinal organs. Thus, npo is a gene essential for a key step in the gut morphogenetic sequence.
nil per os encodes a conserved RNA recognition motif protein required for morphogenesis and cytodifferentiation of digestive organs in zebrafish
Present address: Novartis Institutes for Biomedical Research, 400 Tech Square, 7th floor, Cambridge, MA 02139, USA
Alan N. Mayer, Mark C. Fishman; nil per os encodes a conserved RNA recognition motif protein required for morphogenesis and cytodifferentiation of digestive organs in zebrafish. Development 1 September 2003; 130 (17): 3917–3928. doi: https://doi.org/10.1242/dev.00600
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.