In the Drosophila embryo, studies on CNS development have so far mainly focused on the relatively simply structured ventral nerve cord. In the trunk, proneural genes become expressed in small cell clusters at specific positions of the ventral neuroectoderm. A lateral inhibition process mediated by the neurogenic genes ensures that only one cell within each proneural cluster delaminates as a neural stem cell (neuroblast). Thus, a fixed number of neuroblasts is formed, according to a stereotypical spatiotemporal and segmentally repeated pattern, each subsequently generating a specific cell lineage. Owing to higher complexity and hidden segmental organisation, the mechanisms underlying the development of the brain are much less understood. In order to pave the way towards gaining deeper insight into these mechanisms,we have undertaken a comprehensive survey of early brain development until embryonic stage 11, when all brain neuroblasts have formed. We describe the complete spatiotemporal pattern of formation of about 100 brain neuroblasts on either side building the trito-, deuto- and protocerebrum. Using 4D-microscopy, we have uncovered various modes of neuroblast formation that are related to specific mitotic domains of the procephalic neuroectoderm. Furthermore, a detailed description is provided of the dynamic expression patterns of proneural genes (achaete, scute, lethal of scute, atonal)in the procephalic neuroectoderm and the individual neuroblasts. Finally, we present direct evidence that, in contrast to the trunk, adjacent cells within specific domains of the procephalic neuroectoderm develop as neuroblasts,indicating that mechanisms controlling neuroblast formation differ between head and trunk.
The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila Available to Purchase
Rolf Urbach, Ralf Schnabel, Gerhard M. Technau; The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development 15 August 2003; 130 (16): 3589–3606. doi: https://doi.org/10.1242/dev.00528
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.