Planar polarity decisions in the wing of Drosophila involve the assembly of asymmetric protein complexes containing the conserved receptor Frizzled. In this study, we analyse the role of the Van Gogh/strabismus gene in the formation of these complexes and cell polarisation. We find that the Strabismus protein becomes asymmetrically localised to the proximal edge of cells. In the absence of strabismusactivity, the planar polarity proteins Dishevelled and Prickle are mislocalised in the cell. We show that Strabismus binds directly to Dishevelled and Prickle and is able to recruit them to membranes. Furthermore,we demonstrate that the putative PDZ-binding motif at the C terminus of Strabismus is not required for its function. We propose a two-step model for assembly of Frizzledcontaining asymmetric protein complexes at cell boundaries. First, Strabismus acts together with Frizzled and the atypical cadherin Flamingo to mediate apicolateral recruitment of planar polarity proteins including Dishevelled and Prickle. In the second phase, Dishevelled and Prickle are required for these proteins to become asymmetrically distributed on the proximodistal axis.
Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning Available to Purchase
These authors contributed equally to this work
These authors contributed equally to this work
These authors contributed equally to this work
These authors contributed equally to this work
Rebecca Bastock, Helen Strutt, David Strutt; Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development 1 July 2003; 130 (13): 3007–3014. doi: https://doi.org/10.1242/dev.00526
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. Together with our preprint highlights service, preLights, these perspectives help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.