Renal dysplasia, the most frequent cause of childhood renal failure in humans, arises from perturbations in a complex series of morphogenetic events during embryonic renal development. The molecular pathogenesis of renal dysplasia is largely undefined. While investigating the role of a BMP-dependent pathway that inhibits branching morphogenesis in vitro, we generated a novel model of renal dysplasia in a transgenic (Tg) model of ALK3receptor signaling. We report the renal phenotype, and our discovery of molecular interactions between effectors in the BMP and WNT signaling pathways in dysplastic kidney tissue. Expression of the constitutively active ALK3 receptor ALK3QD, in two independent transgenic lines caused renal aplasia/severe dysgenesis in 1.5% and 8.4% of hemizygous and homozygous Tg mice, respectively, and renal medullary cystic dysplasia in 49% and 74% of hemizygous and homozygous Tg mice, respectively. The dysplastic phenotype,which included a decreased number of medullary collecting ducts, increased medullary mesenchyme, collecting duct cysts and decreased cortical thickness,was apparent by E18.5. We investigated the pathogenesis of dysplasia in these mice, and demonstrated a 30% decrease in branching morphogenesis at E13.5 before the appearance of histopathogical features of dysplasia, and the formation of β-catenin/SMAD1/SMAD4 molecular complexes in dysplastic renal tissue. Increased transcriptional activity of a β-catenin reporter gene in ALK3QD;Tcf-gal mice demonstrated functional cooperativity between the ALK3 and β-catenin-dependent signaling pathways in kidney tissue. Together with our results in the dysplastic mouse kidney,our findings that phospho-SMAD1 and β-catenin are overexpressed in human fetal dysplastic renal tissue suggest that dysregulation of these signaling effectors is pathogenic in human renal dysplasia. Our work provides novel insights into the role that crucial developmental signaling pathways may play during the genesis of malformed renal tissue elements.
Elevated SMAD1/β-catenin molecular complexes and renal medullary cystic dysplasia in ALK3 transgenic mice Available to Purchase
Ming Chang Hu, Tino D. Piscione, Norman D. Rosenblum; Elevated SMAD1/β-catenin molecular complexes and renal medullary cystic dysplasia in ALK3 transgenic mice. Development 15 June 2003; 130 (12): 2753–2766. doi: https://doi.org/10.1242/dev.00478
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.