The molecular mechanisms that control the ordered patterning of vascular tissue development in plants are not well understood. Several models propose a two-component system for vascular differentiation. These components include an inducer of vascular tissue development and an inhibitor that prevents the formation of vascular bundles near pre-existing bundles. We have identified two recessive allelic mutants in Arabidopsis, designated continuous vascular ring (cov1), that display a dramatic increase in vascular tissue development in the stem in place of the interfascicular region that normally separates the vascular bundles. The mutant plants exhibited relatively normal vascular patterning in leaves and cotyledons. Analysis of the interaction of cov1 with a known auxin signalling mutant and direct analysis of auxin concentrations suggests that cov1 affects vascular pattering by some mechanism that is independent of auxin. The COV1 protein is predicted to be an integral membrane protein of unknown function, highly conserved between plants and bacteria. In plants, COV1 is likely to be involved in a mechanism that negatively regulates the differentiation of vascular tissue in the stem.
Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis
Garry Parker, Rebecca Schofield, Björn Sundberg, Simon Turner; Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development 15 May 2003; 130 (10): 2139–2148. doi: https://doi.org/10.1242/dev.00441
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.