Steroids are synthesized mainly from the adrenal cortex. Adrenal deficiencies are often associated with problems related to its development,which is not fully understood. To better understand adrenocortical development, we studied zebrafish because of the ease of embryo manipulation. The adrenocortical equivalent in zebrafish is called the interrenal, because it is embedded in the kidney. We find that interrenal development parallels that of the embryonic kidney (pronephros). Primordial interrenal cells first appear as bilateral intermediate mesoderm expressing ff1b in a region ventral to the third somite. These cells then migrate toward the axial midline and fuse together. The pronephric primordia are wt1-expressing cells located next to the interrenal. They also migrate to the axial midline and fuse to become glomeruli at later developmental stages. Our gene knockdown experiments indicate that wt1 is required for its initial restricted expression in pronephric primordia, pronephric cell migration and fusion. wt1 also appears to be involved in interrenal development and ff1b expression. Similarly, ff1b is required for interrenal differentiation and activation of the differentiated gene, cyp11a1. Our results show that the zebrafish interrenal and pronephros are situated close together and go through parallel developmental processes but are governed by different signaling events.
Parallel early development of zebrafish interrenal glands and pronephros:differential control by wt1 and ff1b Available to Purchase
Hwei-Jan Hsu, Guang Lin, Bon-chu Chung; Parallel early development of zebrafish interrenal glands and pronephros:differential control by wt1 and ff1b. Development 15 May 2003; 130 (10): 2107–2116. doi: https://doi.org/10.1242/dev.00427
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.