In Drosophila melanogaster, the Ras signal transduction pathway is the primary effector of receptor tyrosine kinases, which govern diverse developmental programs. During oogenesis, epidermal growth factor receptor signaling through the Ras pathway patterns the somatic follicular epithelium, establishing the dorsoventral asymmetry of eggshell and embryo. Analysis of follicle cell clones homozygous for a null allele of Ras demonstrates that Ras is required cell-autonomously to repress pipe transcription, the critical first step in embryonic dorsoventral patterning. The effects of aberrant pipe expression in Ras mosaic egg chambers can be ameliorated, however, by post-pipe patterning events, which salvage normal dorsoventral polarity in most embryos derived from egg chambers with dorsal Ras clones. The patterned follicular epithelium also determines the final shape of the eggshell, including the dorsal respiratory appendages, which are formed by the migration of two dorsolateral follicle cell populations. Confocal analyses of mosaic egg chambers demonstrate that Ras is required both cell- and non cell-autonomously for morphogenetic behaviors characteristic of dorsal follicle cell migration, and reveal a novel, Ras-dependent pattern of basal E-cadherin localization in dorsal midline follicle cells.
Mosaic analyses reveal the function of Drosophila Ras in embryonic dorsoventral patterning and dorsal follicle cell morphogenesis Available to Purchase
Karen E. James, Jennie B. Dorman, Celeste A. Berg; Mosaic analyses reveal the function of Drosophila Ras in embryonic dorsoventral patterning and dorsal follicle cell morphogenesis. Development 1 May 2002; 129 (9): 2209–2222. doi: https://doi.org/10.1242/dev.129.9.2209
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.