The Drosophila Pelle kinase plays a key role in the evolutionarily conserved Toll signaling pathway, but the mechanism responsible for its activation has been unknown. We present in vivo and in vitro evidence establishing an important role for concentration-dependent autophosphorylation in the signaling process. We first show that Pelle phosphorylation can be detected transiently in early embryos, concomitant with activation of signaling. Importantly, Pelle phosphorylation is enhanced in a gain-of-function Toll mutant (Toll10b), but decreased by loss-of-function Toll alleles. Next we found that Pelle is phosphorylated in transfected Schneider L2 cells in a concentration-dependent manner such that significant modification is observed only at high Pelle concentrations, which coincide with levels required for phosphorylation and activation of the downstream target, Dorsal. Pelle phosphorylation is also enhanced in L2 cells co-expressing Toll10b, and is dependent on Pelle kinase activity. In vitro kinase assays revealed that recombinant, autophosphorylated Pelle is far more active than unphosphorylated Pelle. Importantly, unphosphorylated Pelle becomes autophosphorylated, and activated, by incubation at high concentrations. We discuss these results in the context of Toll-like receptor mediated signaling in both flies and mammals.
Pelle kinase is activated by autophosphorylation during Toll signaling in Drosophila Available to Purchase
Baohe Shen, James L. Manley; Pelle kinase is activated by autophosphorylation during Toll signaling in Drosophila. Development 15 April 2002; 129 (8): 1925–1933. doi: https://doi.org/10.1242/dev.129.8.1925
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.