Neural patterning of the vertebrate brain starts within the ectoderm during gastrulation and requires the activity of organizer cell populations in the neurectoderm. One such organizer is located at the prospective midbrain-hindbrain boundary (MHB) and controls development of the midbrain and the anterior hindbrain via the secreted signaling molecule Fgf8. However, little is known about how the ability of neural precursors to respond to Fgf8 is regulated. We have studied the function of the zebrafish spiel-ohne-grenzen (spg) gene in early neural development. Genetic mapping and molecular characterization presented in the accompanying paper revealed that spg mutations disrupt the pou2 gene, which encodes a POU domain transcription factor that is specifically expressed in the MHB primordium, and is orthologous to mammalian Oct3/Oct4. We show that embryos homozygous for spg/pou2 have severe defects in development of the midbrain and hindbrain primordium. Key molecules that function in the formation of the MHB, such as pax2.1, spry4, wnt1, her5, eng2 and eng3, and in hindbrain development, such as krox20, gbx2, fkd3 and pou2, are all abnormal in spg mutant embryos. By contrast, regional definition of the future MHB in the neuroectoderm by complementary expression of otx2 and gbx1, before the establishment of the complex regulatory cascade at the MHB, is normal in spg embryos. Moreover, the Fgf8 and Wnt1 signaling pathways are activated normally at the MHB but become dependent on spg towards the end of gastrulation. Therefore, spg plays a crucial role both in establishing and in maintaining development of the MHB primordium. Transplantation chimeras show that normal spg function is required within the neuroectoderm but not the endomesoderm. Importantly, gain-of-function experiments by mRNA injection of fgf8 and pou2 or Fgf8 bead implantations, as well as analysis of spg-ace double mutants show that spg embryos are insensitive to Fgf8, although Fgf receptor expression and activity of the downstream MAP kinase signaling pathway appear intact. We suggest that spg/pou2 is a transcription factor that mediates regional competence to respond to Fgf8 signaling.
spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development
Gerlinde Reim, Michael Brand; spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development 15 February 2002; 129 (4): 917–933. doi: https://doi.org/10.1242/dev.129.4.917
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
About us

Our publisher, The Company of Biologists, turns 100 this year. Read about the history of the Company and find out what Sarah Bray, our Chair of the Board of Directors, has to say.
Biologists @ 100 - join us in Liverpool in March 2025

We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the Spring Meetings of the BSCB and the BSDB, the JEB Symposium Sensory Perception in a Changing World and a DMM programme on antimicrobial resistance. Find out more and register by 28 February 2025 to join us in March 2025 in Liverpool, UK.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.