Janus kinase (JAK) pathway activity is an integral part of signaling through a variety of ligands and receptors in mammals. The extensive re-utilization and pleiotropy of this pathway in vertebrate development is conserved in other animals as well. In Drosophila melanogaster, JAK signaling has been implicated in embryonic pattern formation, sex determination, larval blood cell development, wing venation, planar polarity in the eye, and formation of other adult structures. Here we describe several roles for JAK signaling in Drosophila oogenesis. The gene for a JAK pathway ligand, unpaired, is expressed specifically in the polar follicle cells, two pairs of somatic cells at the anterior and posterior poles of the developing egg chamber. Consistent with unpaired expression, reduced JAK pathway activity results in the fusion of developing egg chambers. A primary defect of these chambers is the expansion of the polar cell population and concomitant loss of interfollicular stalk cells. These phenotypes are enhanced by reduction of unpaired activity, suggesting that Unpaired is a necessary ligand for the JAK pathway in oogenesis. Mosaic analysis of both JAK pathway transducers, hopscotch and Stat92E, reveals that JAK signaling is specifically required in the somatic follicle cells. Moreover, JAK activity is also necessary for the initial commitment of epithelial follicle cells. Many of these roles are in common with, but distinct from, the known functions of Notch signaling in oogenesis. Consistent with these data is a model in which Notch signaling determines a pool of cells to be competent to adopt stalk or polar fate, while JAK signaling assigns specific identity within that competent pool.
JAK signaling is somatically required for follicle cell differentiation in Drosophila
Jennifer R. McGregor, Rongwen Xi, Douglas A. Harrison; JAK signaling is somatically required for follicle cell differentiation in Drosophila. Development 1 February 2002; 129 (3): 705–717. doi: https://doi.org/10.1242/dev.129.3.705
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.