Ciliated neurons play an important role in sensory perception in many animals. Modified cilia at dendrite endings serve as sites of sensory signal capture and transduction. We describe Drosophila mutations that affect the transcription factor RFX and genetic rescue experiments that demonstrate its central role in sensory cilium differentiation. Rfxmutant flies show defects in chemosensory and mechanosensory behaviors but have normal phototaxis, consistent with Rfx expression in ciliated sensory neurons and neuronal precursors but not in photoreceptors. The mutant behavioral phenotypes are correlated with abnormal function and structure of neuronal cilia, as shown by the loss of sensory transduction and by defects in ciliary morphology and ultrastructure. These results identify Rfx as an essential regulator of ciliated sensory neuron differentiation inDrosophila.
Drosophila Regulatory factor X is necessary for ciliated sensory neuron differentiation Available to Purchase
These authors contributed equally to this work
These authors contributed equally to this work
These authors contributed equally to this work
These authors contributed equally to this work
These authors contributed equally to this work
These authors contributed equally to this work
Raphaelle Dubruille, Anne Laurençon, Camille Vandaele, Emiko Shishido, Madeleine Coulon-Bublex, Peter Swoboda, Pierre Couble, Maurice Kernan, Bénédicte Durand; Drosophila Regulatory factor X is necessary for ciliated sensory neuron differentiation. Development 1 December 2002; 129 (23): 5487–5498. doi: https://doi.org/10.1242/dev.00148
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.