The valentino (val) mutation in zebrafish perturbs hindbrain patterning and, as a secondary consequence, also alters development of the inner ear. We have examined the relationship between these defects and expression of fgf3 and fgf8 in the hindbrain. The otic vesicle in val/val mutants is smaller than normal, yet produces nearly twice the normal number of hair cells, and some hair cells are produced ectopically between the anterior and posterior maculae. Anterior markerspax5 and nkx5.1 are expressed in expanded domains that include the entire otic epithelium juxtaposed to the hindbrain, and the posterior marker zp23 is not expressed. In the mutant hindbrain,expression of fgf8 is normal, whereas the domain of fgf3expression expands to include rhombomere 4 through rhombomere X (an aberrant segment that forms in lieu of rhombomeres 5 and 6). Depletion of fgf3by injection of antisense morpholino (fgf3-MO) suppresses the ear patterning defects in val/val embryos: Excess and ectopic hair cells are eliminated, expression of anterior otic markers is reduced or ablated, andzp23 is expressed throughout the medial wall of the otic vesicle. By contrast, disruption of fgf8 does not suppress the val/valphenotype but instead interacts additively, indicating that these genes affect distinct developmental pathways. Thus, the inner ear defects observed inval/val mutants appear to result from ectopic expression offgf3 in the hindbrain. These data also indicate that valnormally represses fgf3 expression in r5 and r6, an interpretation further supported by the effects of misexpressing val in wild-type embryos. This is in sharp contrast to the mouse, in which fgf3 is normally expressed in r5 and r6 because of positive regulation by kreisler, the mouse ortholog of val. Implications for co-evolution of the hindbrain and inner ear are discussed.
An expanded domain of fgf3 expression in the hindbrain of zebrafish valentino mutants results in mis-patterning of the otic vesicle
Su-Jin Kwak, Bryan T. Phillips, Rebecca Heck, Bruce B. Riley; An expanded domain of fgf3 expression in the hindbrain of zebrafish valentino mutants results in mis-patterning of the otic vesicle. Development 15 November 2002; 129 (22): 5279–5287. doi: https://doi.org/10.1242/dev.129.22.5279
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.