In C. elegans, a TGFβ-related signaling pathway regulates body size. Loss of function of the signaling ligand (dbl-1),receptors (daf-4 and sma-6) or Smads (sma-2, sma-3and sma-4) results in viable, but smaller animals because of a reduction in postembryonic growth. We have investigated the tissue specificity of this pathway in body size regulation. We show that different tissues are reduced in size by different proportions, with hypodermal blast cell size most closely proportional to body size. We show that SMA-3 Smad is expressed in pharynx, intestine and hypodermis, as has been previously reported for the type I receptor SMA-6. Furthermore, we find that SMA-3::GFP is nuclear localized in all of these tissues, and that nuclear localization is enhanced by SMA-6 activity. Interestingly, SMA-3 protein accumulation was found to be negatively regulated by the level of Sma/Mab pathway activity. Using genetic mosaic analysis and directed expression of SMA-3, we find that SMA-3 activity in the hypodermis is necessary and sufficient for normal body size. Asdbl-1 is expressed primarily in the nervous system, these results suggest a model in which postembryonic growth of hypodermal cells is regulated by TGFβ-related signaling from the nervous system to the hypodermis.
The expression of TGFβ signal transducers in the hypodermis regulates body size in C. elegans
Jianjun Wang, Rafal Tokarz, Cathy Savage-Dunn; The expression of TGFβ signal transducers in the hypodermis regulates body size in C. elegans. Development 1 November 2002; 129 (21): 4989–4998. doi: https://doi.org/10.1242/dev.129.21.4989
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.