Endoderm specification in zebrafish is mediated by the zygotic transcription factors Bon/Mixer, Faust/Gata5, Casanova and Sox17, whose expression is induced by Nodal signalling. Bon/Mixer and Gata5 require Casanova in order to promote endoderm formation and all three factors act upstream of sox17, but it is not clear whether Casanova acts downstream of or in parallel to Bon/Mixer and Gata5. An additional factor induced at the margin of the blastoderm by Nodal signalling is thought to be required to induce casanova expression. We show that Mezzo, a novelpaired-like homeobox protein, may be this missing transcription factor. The homeobox of Mezzo is mostly related to the homeodomain of the Mix-like and Mixer homeoproteins, but Mezzo is distinct from Bon/Mixer, the product of the bonnie and clyde gene. Like bon/mixer, mezzois expressed transiently in mesendoderm precursors. By analysing the expression of mezzo in various mutants of Nodal signalling, we show that its expression strictly depends on a functional Nodal signalling pathway. By expressing a constitutively active Nodal receptor in the presence of translation inhibitors, we further demonstrate that mezzo, bonnie and clyde, and casanova are all immediate early targets of Nodal signalling, while sox17 requires post-MBT protein synthesis in order to be induced. Overexpression of mezzo mRNA can induce ectopic expression of casanova and sox17 and can also turn on the pan mesodermal marker gene ntl. We show that the function ofmezzo is redundant with that of bonnie and clyde and thatmezzo RNA can partially rescue bonnie and clyde mutants. Injection of antisense Morpholino oligonucleotides targeted againstmezzo into bonnie and clyde mutant embryos abolishes allsox17 expression and aggravates their mutant phenotype. These results highlight the complexity of the transcriptional network operating during endoderm formation. They place mezzo as a new transcription factor with unique properties acting in parallel with bonnie and clyde,faust and casanova in the Nodal signalling pathway that controls specification of mesoderm and endoderm in zebrafish.
Mezzo, a paired-like homeobox protein is an immediate target of Nodal signalling and regulates endoderm specification in zebrafish
Morgane Poulain, Thierry Lepage; Mezzo, a paired-like homeobox protein is an immediate target of Nodal signalling and regulates endoderm specification in zebrafish. Development 1 November 2002; 129 (21): 4901–4914. doi: https://doi.org/10.1242/dev.129.21.4901
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.