Previous genetic studies indicated intersex (ix) functions only in females and that it acts near the end of the sex determination hierarchy to control somatic sexual differentiation in Drosophila melanogaster. We have cloned ix and characterized its function genetically, molecularly and biochemically. The ix pre-mRNA is not spliced, and ix mRNA is produced in both sexes. The ix gene encodes a 188 amino acid protein, which has a sequence similar to mammalian proteins thought to function as transcriptional activators, and a Caenorhabditis elegans protein that is thought to function as a transcription factor. Bringing together the facts that (1) the ix phenotype is female-specific and (2) functions at the end of the sex determination hierarchy, yet (3) is expressed sex non-specifically and appears likely to encode a transcription factor with no known DNA-binding domain, leads to the inference that ix may require the female-specific protein product of the doublesex (dsx) gene in order to function. Consistent with this inference, we find that for all sexually dimorphic cuticular structures examined, ix and dsx are dependent on each other to promote female differentiation. This dependent relationship also holds for the only known direct target of dsx, the Yolk protein (Yp) genes. Using yeast 2-hybrid assay, immunoprecipitation of recombinant tagged IX and DSX proteins from Drosophila S2 cell extracts, and gel shifts with the tagged IX and DSXF proteins, we demonstrate that IX interacts with DSXF, but not DSXM. Taken together, the above findings strongly suggest that IX and DSXF function in a complex, in which IX acts as a transcriptional co-factor for the DNA-binding DSXF.
intersex, a gene required for female sexual development in Drosophila, is expressed in both sexes and functions together with doublesex to regulate terminal differentiation
Carrie M. Garrett-Engele, Mark L. Siegal, Devanand S. Manoli, Byron C. Williams, Hao Li, Bruce S. Baker; intersex, a gene required for female sexual development in Drosophila, is expressed in both sexes and functions together with doublesex to regulate terminal differentiation. Development 15 October 2002; 129 (20): 4661–4675. doi: https://doi.org/10.1242/dev.129.20.4661
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.