In mammals, Sry expression in the bipotential, undifferentiated gonad directs the support cell precursors to differentiate as Sertoli cells, thus initiating the testis differentiation pathway. In the absence of Sry, or if Sry is expressed at insufficient levels, the support cell precursors differentiate as granulosa cells, thus initiating the ovarian pathway. The molecular mechanisms upstream and downstream of Sry are not well understood. We demonstrate that the transcription factor GATA4 and its co-factor FOG2 are required for gonadal differentiation. Mouse fetuses homozygous for a null allele of Fog2 or homozygous for a targeted mutation in Gata4 (Gata4ki) that abrogates the interaction of GATA4 with FOG co-factors exhibit abnormalities in gonadogenesis. We found that Sry transcript levels were significantly reduced in XY Fog2–/– gonads at E11.5, which is the time when Sry expression normally reaches its peak. In addition, three genes crucial for normal Sertoli cell function (Sox9, Mis and Dhh) and three Leydig cell steroid biosynthetic enzymes (p450scc, 3βHSD and p450c17) were not expressed in XY Fog2–/– and Gataki/ki gonads, whereas Wnt4, a gene required for normal ovarian development, was expressed ectopically. By contrast, Wt1 and Sf1, which are expressed prior to Sry and necessary for gonad development in both sexes, were expressed normally in both types of mutant XY gonads. These results indicate that GATA4 and FOG2 and their physical interaction are required for normal gonadal development.
Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2
Sergei G. Tevosian, Kenneth H. Albrecht, John D. Crispino, Yuko Fujiwara, Eva M. Eicher, Stuart H. Orkin; Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 1 October 2002; 129 (19): 4627–4634. doi: https://doi.org/10.1242/dev.129.19.4627
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.