Tbx1 haploinsufficiency causes aortic arch abnormalities in mice because of early growth and remodeling defects of the fourth pharyngeal arch arteries. The function of Tbx1 in the development of these arteries is probably cell non-autonomous, as the gene is not expressed in structural components of the artery but in the surrounding pharyngeal endoderm. We hypothesized that Tbx1 may trigger signals from the pharyngeal endoderm directed to the underlying mesenchyme. We show that the expression patterns of Fgf8 and Fgf10, which partially overlap with Tbx1 expression pattern, are altered in Tbx1–/– mutants. In particular, Fgf8 expression is abolished in the pharyngeal endoderm. To understand the significance of this finding for the pathogenesis of the mutant Tbx1 phenotype, we crossed Tbx1 and Fgf8 mutants. Double heterozygous Tbx1+/–;Fgf8+/– mutants present with a significantly higher penetrance of aortic arch artery defects than do Tbx1+/–;Fgf8+/+ mutants, while Tbx1+/+;Fgf8+/– animals are normal. We found that Fgf8 mutation increases the severity of the primary defect caused by Tbx1 haploinsufficiency, i.e. early hypoplasia of the fourth pharyngeal arch arteries, consistent with the time and location of the shared expression domain of the two genes. Hence, Tbx1 and Fgf8 interact genetically in the development of the aortic arch. Our data provide the first evidence of a genetic link between Tbx1 and FGF signaling, and the first example of a modifier of the Tbx1 haploinsufficiency phenotype. We speculate that the FGF8 locus might affect the penetrance of cardiovascular defects in individuals with chromosome 22q11 deletions involving TBX1.
A genetic link between Tbx1 and fibroblast growth factor signaling
Francesca Vitelli, Ilaria Taddei, Masae Morishima, Erik N. Meyers, Elizabeth A. Lindsay, Antonio Baldini; A genetic link between Tbx1 and fibroblast growth factor signaling. Development 1 October 2002; 129 (19): 4605–4611. doi: https://doi.org/10.1242/dev.129.19.4605
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.