Vertebrate myogenesis is controlled by four transcription factors known as the myogenic regulatory factors (MRFs): Myf5, Mrf4, myogenin and MyoD. During mouse development Myf5 is the first MRF to be expressed and it acts by integrating multiple developmental signals to initiate myogenesis. Numerous discrete regulatory elements are involved in the activation and maintenance of Myf5 gene expression in the various muscle precursor populations, reflecting the diversity of the signals that control myogenesis. Here we focus on the enhancer that recapitulates the first phase of Myf5 expression in the epaxial domain of the somite, in order to identify the subset of cells that first transcribes the gene and therefore gain insight into molecular, cellular and anatomical facets of early myogenesis. Deletion of this enhancer from a YAC reporter construct that recapitulates the Myf5 expression pattern demonstrates that this regulatory element is necessary for expression in the early epaxial somite but in no other site of myogenesis. Importantly, Myf5 is subsequently expressed in the epaxial myotome under the control of other elements located far upstream of the gene. Our data suggest that the inductive signals that control Myf5 expression switch rapidly from those that impinge on the early epaxial enhancer to those that impinge on the other enhancers that act later in the epaxial somite, indicating that there are significant changes in either the signalling environment or the responsiveness of the cells along the rostrocaudal axis. We propose that the first phase of Myf5 epaxial expression, driven by the early epaxial enhancer in the dermomyotome, is necessary for early myotome formation, while the subsequent phases are associated with cytodifferentiation within the myotome.
The early epaxial enhancer is essential for the initial expression of the skeletal muscle determination gene Myf5 but not for subsequent, multiple phases of somitic myogenesis
Lydia Teboul, Juliette Hadchouel, Philippe Daubas, Dennis Summerbell, Margaret Buckingham, Peter W. J. Rigby; The early epaxial enhancer is essential for the initial expression of the skeletal muscle determination gene Myf5 but not for subsequent, multiple phases of somitic myogenesis. Development 1 October 2002; 129 (19): 4571–4580. doi: https://doi.org/10.1242/dev.129.19.4571
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. Together with our preprint highlights service, preLights, these perspectives help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.