The dyad mutant of Arabidopsis was previously identified as being defective in female meiosis. We report here the analysis of the DYAD gene. In ovules and anthers DYAD RNA is detected specifically in female and male meiocytes respectively, in premeiotic interphase/meiotic prophase. Analysis of chromosome spreads in female meiocytes showed that in the mutant, chromosomes did not undergo synapsis and formed ten univalents instead of five bivalents. Unlike mutations in AtDMC1 and AtSPO11 which also affect bivalent formation as the univalent chromosomes segregate randomly, the dyad univalents formed an ordered metaphase plate and underwent an equational division. This suggests a requirement for DYAD for chromosome synapsis and centromere configuration in female meiosis. The dyad mutant showed increased and persistent expression of a meiosis-specific marker, pAtDMC1::GUS during female meiosis, indicative of defective meiotic progression. The sequence of the putative protein encoded by DYAD did not reveal strong similarity to other proteins. DYAD is therefore likely to encode a novel protein required for meiotic chromosome organisation and female meiotic progression.
Identification and analysis of DYAD: a gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis Available to Purchase
Bhavna Agashe, Chellapilla Krishna Prasad, Imran Siddiqi; Identification and analysis of DYAD: a gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis. Development 15 August 2002; 129 (16): 3935–3943. doi: https://doi.org/10.1242/dev.129.16.3935
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.