Muscular dystrophy is frequently caused by disruption of the dystrophin-glycoprotein complex (DGC), which links muscle cells to the extracellular matrix. Dystroglycan, a central component of the DGC, serves as a laminin receptor via its extracellular α subunit, and interacts with dystrophin (and thus the actin cytoskeleton) through its integral membrane β subunit. We have removed the function of dystroglycan in zebrafish embryos. In contrast to mouse, where dystroglycan mutations lead to peri-implantation lethality, dystroglycan is dispensable for basement membrane formation during early zebrafish development. At later stages, however, loss of dystroglycan leads to a disruption of the DGC, concurrent with loss of muscle integrity and necrosis. In addition, we find that loss of the DGC leads to loss of sarcomere and sarcoplasmic reticulum organisation. The DGC is required for long-term survival of muscle cells in zebrafish, but is dispensable for muscle formation. Dystroglycan or the DGC is also required for normal sarcomere and sarcoplasmic reticulum organisation. Because zebrafish embryos lacking dystroglycan share several characteristics with human muscular dystrophy, they should serve as a useful model for the disease. In addition, knowing the dystroglycan null phenotype in zebrafish will facilitate the isolation of other molecules involved in muscular dystrophy pathogenesis.
Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos
Michael J. Parsons, Isabel Campos, Elizabeth M. A. Hirst, Derek L. Stemple; Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos. Development 15 July 2002; 129 (14): 3505–3512. doi: https://doi.org/10.1242/dev.129.14.3505
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.