Most plant cells divide in planes that can be predicted from their shapes according to simple geometrical rules, but the division planes of some cells appear to be influenced by extracellular cues. In the maize leaf, some cells divide in orientations not predicted by their shapes, raising the possibility that cell-cell communication plays a role in division plane determination in this tissue. We investigated this possibility through mosaic analysis of the tangled (tan) mutation, which causes a high frequency of cells in all tissue layers to divide in abnormal orientations. Clonal sectors of tan mutant tissue marked by a closely linked albino mutation were examined to determine the phenotypes of cells near sector boundaries. We found that tan mutant cells always showed the mutant phenotype regardless of their proximity to wild-type cells, demonstrating that the wild-type Tan gene acts cell-autonomously in both lateral and transverse leaf dimensions to promote normally oriented divisions. However, if the normal division planes of wild-type cells depend on cell-cell communication involving the products of genes other than Tan, then aberrantly dividing tan mutant cells might send abnormal signals that alter the division planes of neighboring cells. The cell-autonomy of the tan mutation allowed us to investigate this possibility by examining wild-type cells near the boundaries of tan mutant sectors for evidence of aberrantly oriented divisions. We found that wild-type cells near tan mutant cells did not divide differently from other wild-type cells. These observations argue against the idea that the division planes of proliferatively dividing maize leaf epidermal cells are governed by short-range communication with their nearest neighbors.
Investigation of the role of cell-cell interactions in division plane determination during maize leaf development through mosaic analysis of the tangled mutation
Keely L. Walker, Laurie G. Smith; Investigation of the role of cell-cell interactions in division plane determination during maize leaf development through mosaic analysis of the tangled mutation. Development 1 July 2002; 129 (13): 3219–3226. doi: https://doi.org/10.1242/dev.129.13.3219
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.