Heparan sulfate (HS), a structurally diverse molecule comprising distinct sequences of sulfated disaccharide units, is abundant in the developing brain and binds to axon guidance molecules. Addition of HS to the developing Xenopus optic pathway causes severe targeting errors yet it is not known how the structural diversity of this molecule relates to its role in axon guidance. We have used an in vivo brain assay to identify the structural characteristics of HS that induce aberrant axon targeting. Inhibiting sulfation of endogenous HS with chlorate causes axons to bypass their target, the tectum, and treatment with chemically modified heparins reveals that 2-O- and 6-O-sulfate groups have potent bypass-inducing activity. Experiments with purified heparin saccharides show that bypass-inducing activity correlates with distinct structures, particularly those containing a combination of 2-O- and 6-O-sulfate groups. Taken together the results indicate that specific sequences, rather than gross structural composition, are critical for activity. In situ hybridisation revealed that HS 6-O-sulfotransferase is regionally expressed along the border of the dorsal optic tract whereas 2-O-sulfotransferase is expressed broadly. Our results demonstrate that specific HS sequences are essential for regulating retinotectal axon targeting and suggest that regionalised biosynthesis of specific HS structures is important for guiding axons into the tectum.
Specific heparan sulfate structures involved in retinal axon targeting Available to Purchase
Atsushi Irie, Edwin A. Yates, Jeremy E. Turnbull, Christine E. Holt; Specific heparan sulfate structures involved in retinal axon targeting. Development 1 January 2002; 129 (1): 61–70. doi: https://doi.org/10.1242/dev.129.1.61
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.