Development of the vertebrate inner ear is characterized by a series of genetically programmed events involving induction of surface ectoderm, preliminary morphogenesis, specification and commitment of sensory, nonsensory and neuronal cells, as well as outgrowth and restructuring of the otocyst to form a complex labyrinth. Hmx2, a member of the Hmx homeobox gene family, is coexpressed with Hmx3 in the dorsolateral otic epithelium. Targeted disruption of Hmx2 in mice demonstrates the temporal and spatial involvement of Hmx2 in the embryonic transition of the dorsal portion (pars superior) of the otocyst to a fully developed vestibular system. In Hmx2 null embryos, a perturbation in cell fate determination in the lateral aspect of the otic epithelium results in reduced cell proliferation in epithelial cells, which includes the vestibular sensory patches and semicircular duct fusion plates, as well as in the adjacent mesenchyme. Consequently, enlargement and morphogenesis of the pars superior of the otocyst to form a complex labyrinth of cavities and ducts is blocked, as indicated by the lack of any distinguishable semicircular ducts, persistence of the primordial vestibular diverticula, significant loss in the three cristae and the macula utriculus, and a fused utriculosaccular chamber. The developmental regulators Bmp4, Dlx5 and Pax2 all play a critical role in inner ear ontogeny, and the expression of each of these genes is affected in the Hmx2 null otocyst suggesting a complex regulatory role for Hmx2 in this genetic cascade. Both Hmx2 and Hmx3 transcripts are coexpressed in the developing central nervous system including the neural tube and hypothalamus. A lack of defects in the CNS, coupled with the fact that not all of the Hmx2-positive regions in developing inner ear are impaired in the Hmx2 null mice, suggest that Hmx2 and Hmx3 have both unique and overlapping functions during embryogenesis.
Hmx2 homeobox gene control of murine vestibular morphogenesis
Weidong Wang, Edwin K. Chan, Shira Baron, Thomas Van De Water, Thomas Lufkin; Hmx2 homeobox gene control of murine vestibular morphogenesis. Development 15 December 2001; 128 (24): 5017–5029. doi: https://doi.org/10.1242/dev.128.24.5017
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
About us

Our publisher, The Company of Biologists, turns 100 this year. Read about the history of the Company and find out what Sarah Bray, our Chair of the Board of Directors, has to say.
Biologists @ 100 - join us in Liverpool in March 2025

We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the Spring Meetings of the BSCB and the BSDB, the JEB Symposium Sensory Perception in a Changing World and a DMM programme on antimicrobial resistance. Find out more and register by 28 February 2025 to join us in March 2025 in Liverpool, UK.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.