Hox genes encode evolutionarily conserved transcription factors involved in the specification of segmental identity during embryonic development. This specification of identity is thought to be directed by differential Hox gene action, based on differential spatiotemporal expression patterns, protein sequence differences, interactions with co-factors and regulation of specific downstream genes. During embryonic development of the Drosophila brain, the Hox gene labial is required for the regionalized specification of the tritocerebral neuromere; in the absence of labial, the cells in this brain region do not acquire a neuronal identity and major axonal pathfinding deficits result. We have used genetic rescue experiments to investigate the functional equivalence of the Drosophila Hox gene products in the specification of the tritocerebral neuromere. Using the Gal4-UAS system, we first demonstrate that the labial mutant brain phenotype can be rescued by targeted expression of the Labial protein under the control of CNS-specific labial regulatory elements. We then show that under the control of these CNS-specific regulatory elements, all other Drosophila Hox gene products, except Abdominal-B, are able to efficiently replace Labial in the specification of the tritocerebral neuromere. We also observe a correlation between the rescue efficiency of the Hox proteins and the chromosomal arrangement of their encoding loci. Our results indicate that, despite considerably diverged sequences, most Hox proteins are functionally equivalent in their ability to replace Labial in the specification of neuronal identity. This suggests that in embryonic brain development, differences in Hox gene action rely mainly on cis-acting regulatory elements and not on Hox protein specificity.
Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila
Frank Hirth, Thomas Loop, Boris Egger, David F. B. Miller, Thomas C. Kaufman, Heinrich Reichert; Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila. Development 1 December 2001; 128 (23): 4781–4788. doi: https://doi.org/10.1242/dev.128.23.4781
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
About us

Our publisher, The Company of Biologists, turns 100 this year. Read about the history of the Company and find out what Sarah Bray, our Chair of the Board of Directors, has to say.
Biologists @ 100 - join us in Liverpool in March 2025

We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the Spring Meetings of the BSCB and the BSDB, the JEB Symposium Sensory Perception in a Changing World and a DMM programme on antimicrobial resistance. Find out more and register by 28 February 2025 to join us in March 2025 in Liverpool, UK.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.