In the caudal neural tube, oligodendrocyte progenitors (OLPs) originate in the ventral neuroepithelium under the influence of Sonic hedgehog (SHH), then migrate throughout the spinal cord and brainstem before differentiating into myelin-forming cells. We present evidence that oligodendrogenesis in the anterior neural tube follows a similar pattern. We show that OLPs in the embryonic mouse forebrain express platelet-derived growth factor alpha-receptors (PDGFRA), as they do in more caudal regions. They first appear within a region of anterior hypothalamic neuroepithelium that co-expresses mRNA encoding SHH, its receptor PTC1 (PTCH) and the transcription factors OLIG1, OLIG2 and SOX10. Pdgfra-positive progenitors later spread through the forebrain into areas where Shh is not expressed, including the cerebral cortex. Cyclopamine inhibited OLP development in cultures of mouse basal forebrain, suggesting that hedgehog (HH) signalling is obligatory for oligodendrogenesis in the ventral telencephalon. Moreover, Pdgfra-positive progenitors did not appear on schedule in the ventral forebrains of Nkx2.1 null mice, which lack the telencephalic domain of Shh expression. However, OLPs did develop in cultures of Nkx2.1−/− basal forebrain and this was blocked by cyclopamine. OLPs also developed in neocortical cultures, even though Shh transcripts could not be detected in the embryonic cortex. Here, too, the appearance of OLPs was suppressed by cyclopamine. In keeping with these findings, we detected mRNA encoding SHH and Indian hedgehog (IHH) in both Nkx2.1−/− basal forebrain cultures and neocortical cultures. Overall, the data are consistent with the idea that OLPs in the telencephalon, possibly even some of those in the cortex, develop under the influence of SHH in the ventral forebrain.
Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon
Nicoletta Tekki-Kessaris, Rachel Woodruff, Anita C. Hall, William Gaffield, Shioko Kimura, Charles D. Stiles, David H. Rowitch, William D. Richardson; Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 1 July 2001; 128 (13): 2545–2554. doi: https://doi.org/10.1242/dev.128.13.2545
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.