In order to reveal syncytia within the visceral musculature of Drosophila melanogaster, we have combined the GAL4/UAS system with the single-cell transplantation technique. After transplantation of single cells from UAS-GFP donor embryos into ubiquitously GAL4-expressing recipients, the expression of the reporter gene was exclusively activated in syncytia containing both donor- and recipient-derived nuclei. In the first trial, we tested the system in the larval somatic musculature, which is already known to consist of syncytia. By this means we could show that most of the larval somatic muscles are generated by clonally non-related cells. Moreover, using this approach we were able to detect syncytia within the visceral musculature – a tissue that has previously been described as consisting of mononuclear cells. Both the longitudinal visceral musculature of the midgut and the circular musculature of the hindgut consist of syncytia and persist through metamorphosis. This novel application of the transplantation technique might be a powerful tool to trace syncytia in any organism using the GAL4/UAS system.
A new approach reveals syncytia within the visceral musculature of Drosophila melanogaster Available to Purchase
Robert Klapper, Sandra Heuser, Thomas Strasser, Wilfried Janning; A new approach reveals syncytia within the visceral musculature of Drosophila melanogaster. Development 1 July 2001; 128 (13): 2517–2524. doi: https://doi.org/10.1242/dev.128.13.2517
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Save the date - Human Development: Stem Cells, Models, Embryos

We will be hosting a 2026 Human Development: Stem Cells, Models, Embryos meeting. We have teamed up with the Wellcome-funded consortium, the Human Developmental Biology Initiative (HDBI) to co-organise this event, which will bring together researchers from around the world, united by an interest in understanding human developmental biology. Save the date for 7-9 September 2026 and register.
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
From bench to business

In this Perspective, researchers who have transitioned from academia to industry tell us how they have navigated patents, intellectual property, investors and biotechnology start-ups to bring new biological advances from the bench and into the boardroom.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=9135)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.