Abstract
Neurons provide critical signals that regulate both the number and differentiation of glia. In addition, glia are attracted to and enwrap neuronal axonal processes. FGF-like signalling is thought to be one of the many potential axon-derived morphogenetic signals, however, the multiple roles of FGFs have made experimental tests of these signals difficult in vivo. In the Drosophila FGF receptor mutant heartless, glia migrate to axons, but fail to elongate around them. This study shows that in the similar but larger grasshopper CNS, FGF signalling is likely to mediate one step in the close interaction between glia and axons. FGF2-coated beads attract glia in the CNS and compete with axons for their resident, enwrapped glia. In addition, bath applied FGF2 causes mature axonal glia, which normally enwrap axon tracts, to round up. FGF2 activates the product of the grasshopper heartless FGF receptor gene and probably interferes with the normal function of an endogenous axon-associated FGF-like molecule. It is proposed that insect axons provide a critical spatially restricted FGF-like signal that induces glia to enwrap them.