ABSTRACT
The X-Notch-1 receptor, and its putative ligand, X-Delta-1, are thought to mediate an inhibitory cell-cell interaction, called lateral inhibition, that limits the number of primary neurons that form in Xenopus embryos. The expression of Xenopus ESR-1, a gene related to Drosophila Enhancer of split, appears to be induced by Notch signaling during this process. To determine how the activation of X-Notch-1 induces ESR-1 expression and regulates primary neurogenesis, we isolated the Xenopus homolog of Suppressor of Hairless (X-Su(H)), a component of the Notch signaling pathway in Drosophila. Using animal cap assays, we show that X-Su(H) induces ESR-1 expression, perhaps directly, when modified by the addition of ankyrin repeats. Using a DNA binding mutant of X-Su(H), we show that X-Su(H) activity is required for induction of ESR-1. Finally, expression of the DNA binding mutant in embryos leads to a neurogenic phenotype as well as increased expression of both X-Delta-1 and XNGNR1, a proneural gene expressed during primary neurogenesis. These results suggest that activation of X-Su(H) is a key step in the Notch signaling pathway during primary neurogenesis in Xenopus embryos.